Attacking the V: On the Resiliency of Adaptive-Horizon MPC
نویسندگان
چکیده
We introduce the concept of a V-formation game between a controller and an attacker, where controller’s goal is to maneuver the plant (a simple model of flocking dynamics) into a V-formation, and the goal of the attacker is to prevent the controller from doing so. Controllers in V-formation games utilize a new formulation of model-predictive control we call Adaptive-Horizon MPC (AMPC), giving them extraordinary power: we prove that under certain controllability assumptions, an AMPC controller is able to attain V-formation with probability 1. We define several classes of attackers, including those that in one move can removeR birds from the flock, or introduce random displacement into flock dynamics. We consider both naive attackers, whose strategies are purely probabilistic, and AMPC-enabled attackers, putting them on par strategically with the controllers. While an AMPC-enabled controller is expected to win every game with probability 1, in practice, it is resourceconstrained : its maximum prediction horizon and the maximum number of game execution steps are fixed. Under these conditions, an attacker has a much better chance of winning a V-formation game. Our extensive performance evaluation of V-formation games uses statistical model checking to estimate the probability an attacker can thwart the controller. Our results show that for the bird-removal game with R= 1, the controller almost always wins (restores the flock to a V-formation). For R= 2, the game outcome critically depends on which two birds are removed. For the displacement game, our results again demonstrate that an intelligent attacker, i.e. one that uses AMPC in this case, significantly outperforms its naive counterpart that randomly executes its attack.
منابع مشابه
Analysis of Applying Event-triggered Strategy on the Model Predictive Control
In this paper, the event-triggered strategy in the case of finite-horizon model predictive control (MPC) is studied and its advantages over the input to state stability (ISS) Lyapunov based triggering rule is discussed. In the MPC triggering rule, all the state trajectories in the receding horizon are considered to obtain the triggering rule. Clearly, the finite horizon MPC is sub-optimal with ...
متن کاملComputationally Efficient Long Horizon Model Predictive Direct Current Control of DFIG Wind Turbines
Model predictive control (MPC) based methods are gaining more and more attention in power converters and electrical drives. Nevertheless, high computational burden of MPC is an obstacle for its application, especially when the prediction horizon increases extends. At the same time, increasing the prediction horizon leads to a superior response. In this paper, a long horizon MPC is proposed to c...
متن کاملAdaptive Tuning of Model Predictive Control Parameters based on Analytical Results
In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...
متن کاملImproved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
متن کاملRobust predictive control combined with an adaptive mechanism for constrained uncertain systems subject to disturbances
Abstract: This paper proposes a discrete-time adaptive model predictive control (MPC) algorithm for a class of constrained linear time-invariant systems subject to state-dependent disturbances, which updates the estimate of uncertain system parameters on-line and produces the control input ensuring the constraint fulfillment. This method is based on an adaptive mechanism and a robust MPC algori...
متن کامل